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A simple kinetic theory of fibre failure has been developed that predicts not only the median lifetimes of fibre 
samples under constant load but also the distribution in these lifetimes based upon the distribution in the 
static breaking load of the fibre samples. The theory is applied to Kevlar fibres where data for lifetime under 
various loads are known. 
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I N T R O D U C T I O N  

The ability to predict the lifetime of organic fibres under 
load is of critical importance in assigning reliability in 
many civilian and military applications. There are two 
kinds of lifetime predictions. The first is the prediction of 
the median lifetime for a collection of samples under 
identical loads and is characterized by certain average 
material properties. The second, and in many cases of 
more importance where high reliabilities are required, is 
the prediction of the lifetime distributions under reduced 
loads in a collection of samples. The origin of this 
distribution is undoubtedly traceable to the variation in 
material properties from one sample to the next. These 
variations can be characterized by the distribution of 
static breaking loads in the collection of samples. Even in 
production processes with a high degree of quality 
control, the variation in static breaking load will span 
several per cent or more of the median value, generally 
exhibiting Gaussian or Weibull behaviour. The task we 
will address here is how to convert this easily measured 
narrow distribution in static breaking load to the very 
broad and asymmetric distribution in lifetime 
behaviour 1,2. 

To demonstrate the situation we present in Figure 1 
data for the static breaking load, a measure of fibre 
strength, in pounds force (lbf) of 53 epoxy impregnated 
Kevlar strands 3. We note here that the term 'strength' 
generally refers to a load per cross-sectional area. The 
fibres tested were all Du Pont Kevlar PRD-49-III fibres 
composed of 267 filaments and impregnated with Union 
Carbide ERL2258/ZZL0820 epoxy, (100/30) by weight. 
The fibre phase represented 71.5 % of the total volume. 
Static tensile strength tests were performed on 25.4cm 
fibres at 25°C at an elongation rate of 1.0 cm/min. Failure 
generally occurred at about 2.5 % strain, about 40 s into 
the test. Work at other strain rates gave similar static 
strengths. Unfortunately no diameter measurements were 
made. We will assume equality of cross-sections and thus 
associate the distribution of the breaking loads with a 
distribution in static strength and use these terms 
interchangeably. It should also be noted that the samples 
tested for static breaking load and those tested for lifetime 
behaviour came not only from the same manufacturer's 

batch, but also from the same spool. Further the samples 
tested for lifetime behaviour were loaded at the same rate 
as those tested for static tensile strength. In Figure 1, the 
spikes are associated with the ordinate on the right and 
represent the actual data. The solid curve is the best 
normalized Gaussian fit for the distribution, and is given 
by 

1 g(s ) _ ______~__e - (S-<S> )~ /2 b (i) 

where s is the breaking load with average ( s )  = 22.05 lbf 
and the variance, b, is given by 

N 

b = ~ ( s i -  (s))2/(N - 1 ) = 0.2952 (lbf) 2 (2) 
i = 1  

The broken curve is the best normalized Weibull fit and is 
given by 

m l/ s "~m-1 
w ( s ) = s ~  ) exp[(s/s~,) m] (3) 

where the shape parameter, m, and the scale parameter, 
sw, were determined by the method of maximum 
likelihood to be 46.3 and 22.301bf, respectively 2. The 
scale of the ordinate on the left is for the normalized 
Gaussian, g(s), or Weibull, w(s), and represnts, for the 
curves, the probability density of breaking at a given 
strength. Note that the range of the data is only about 
_ 6 % of the mean and that the differences between the 
Gaussian and Weibull fits are small. In Figure 2 we plot 
lifetime behaviour for a collection of 100 fibres held at 
80 % of the breaking load. Note that the distribution of 
breaking times span nearly three decades, with the time 
for breakage of the first 50 % of the fibres only about 15 % 
of the total time required for breakage of all of the fibres. 
More important from the reliability viewpoint is the short 
time failure, 15% of the sample had failed in less than 
50 h. The ability to understand and predict this broad, 
very asymmetric distribution from the relatively narrow 
and symmetric distribution of static strengths is what this 
paper is concerned with. 
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T H E O R Y  A N D  R E S U L T S  

In a previous paper 4, henceforth referred to as paper 1, we 
developed a kinetic approach  s to predicting the median 
lifetimes of fibre samples. We considered a fibre to be 
made up of  N interacting 'elements', the sum of which 
represents a measure of  the fibre strength. It is tempting to 
associate the elements with either the filaments or  perhaps 
individual polymer chains, however it is limiting to do so. 
It is best to simply consider the elements as a 
mathematical  construct ion which represents the fibre 
strength. Our  approach  was then to model  the stress- 
induced rate of  degradat ion of  the strength by an 
Arrhenius-like rate expression 

d N  

dt 
- -  - - A e  - ( e -  ~¢,/N')/RT N =  (4) 

where A is interpreted as a stress related frequency factor 
and the stress related activation energy, E, is reduced by a 
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Figure i Static breaking loads of Kevlar fibres s. The solid curve 
represents the best normalized Gaussian fit to the data which is for 53 
samples and is represented by the spikes. The broken curve is the best 
Weibull fit to the data 
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Figure 2 Lifetime data for 100 Kevlar fibres samples held at 80% of 
their breaking load a 

term which is linear in the applied stress, o. N is the 
number  of  surviving elements, a measure of  remaining 
strength, at time t. The coefficient of  tr, comprised of  a 
constant  7 divided by N = recognizes that  since a is the 
constant  applied stress, as the strength, or  number  of  
elements diminishes, the effective stress on those 
remaining increases. For  a =  1 we are modelling equal 
load-sharing among  all elements, values of  0t less than 
unity correspond to more  local load-sharing. We note 
here that  the residual strength is propor t ional  to N ~. The 
rate expression is written as being to order  a. As will be 
discussed later, the results are very insensitive to values of  
a from 0 to 2. Simple integration of  a scaled dimensionless 
value of  N from one to zero yields the fibre lifetime, tB, as 

( E - ) , a  _ In A + Q a,a,~--~ ln tB= R T  (5) 

where the form of the function Q depends upon the values 
of ct and a chosen and is given in Table 1. A discussion of  
this formula and its application to the median lifetimes of 
Kevlar fibres was the topic of paper 1. We will now 
rework the theory slightly to allow for a distribution of 
initial fibre strengths. 

To do this we will integrate equat ion (4) from No to 0, 
where N O is the effective number  of  elements before load is 
applied and is thus related to the static breaking load. 
Concurrent  integration of t f rom 0 to tB, the time to break, 
gives us 

0 
t ~  

t ,  = - -  / A -  1N-ae  +(E- ~/N')/gTdN (6) 
q /  

No 

which with rearrangement  (let x=ya/RTN~o) yields for 

t - {  Ttr'~-~- / aA f "-"-' B - I  RT1  x " e-Xdx 

~,cr (7) 

RTN~o 
or 

E -  7tr/N~o In A + O or,a, (8) 
In ta = R T 

No te  that with ct and a equal to zero, Q is also zero and we 
have the simple Zhurkov  relationship 6. The functions 
Q(~,a,x) are given in Table I for various values of  • and a. 
P(x) comes from an approximate  expression for the 
exponential  integral 7 

f e - t t -  Xdt = x -  l e - X P ( x )  

x 

(9) 

Table 1 Additional terms Q(=,a,x) to the modified Zhurkov expression, equation (8), for the time-to-break, ta, of a fibre for various values of a and a. x 
represents the term (ya/RTN~o), P(x) is defined in equation (10), and S(x) in equation (12). With No taken as unity the expressions are appropriate for the 
Q(=,a,x) term in equation (5) 

a ct= 1/2 1 2 

0 In[No] + In[1 - x + xe(x)] In[No] + ln[1 - P(x)] In[No] + ln[S(x)] 
1 - In[x/2] + lnlP(x)] - In[x] + ln[e(x)] - ln[2x] + ln[P(x)] 
2 -ln[xNo/2] + ln[l + 1/x] - ln[xNo] -ln[2xNo] + ln[1 - S(x)] 

1 8 9 6  P O L Y M E R ,  1 9 8 6 ,  Vo l  2 7 ,  D e c e m b e r  



where P(x) is given by 

X 2 
P ( x ) =  +alx+az  (10) 

x2 +blx  +b2 

al = 2.334733 b 1 = 3.330657 

a 2 = 0.250621 b2 = 1.681534 

The approximat ion  has an error  of  less than 0.00005. S(x) 
comes from an asymptot ic  expression for the incomplete 
g a m m a  function 8, 

where 

F(½,x) = f e-it-  1/Zdt = x- l / 2 e - X ( 1  - S(x)) 
x 

(11) 

( 2 i -  1 ) [ ( -  1) '+ 
S(x) (12) 

i= L,1 (2x) i 

We can now calculate the distribution in the lifetime 
based on the distribution in the static strength. Let us 
scale No such that  N o = l  represents the mean  static 
strength. Fo r  the Gaussian fit of  the Kevlar  data  
displayed in Figure 1 this results in 

1 
g'(N°)  = ~ 2 n b '  e - iS°-  1 )2/2b'  (13) 

where g'(No) is the normalized Gaussian probabil i ty that  
a s t rand has strength N O and b ' =  6.07 x 10 -4. Equat ion  
(8) can now be evaluated for values of  Ng where i is the 
decimal per cent of  fibres that  have a strength less than Ng 
and is given by 

i= f g'(No)dNo=~l + ert~)JfNi°-l'~] (14) 

where 

Y 

e f t ( y ) = - e r f ( - y ) = ~ f e x p ( - x 2 ) d x  

0 

(15) 

The equivalent expression for the Weibull distribution is 

(Uo/sw) ] i = l - e x p [ -  i , ,, (16) 

where s~ = sw/(s) = 1.012. 
The results are displayed in Figures 3 and 4 for the 90 ~o 

and 80~o load levels. The per cent failure is plotted versus 
the fibre lifetime. The smooth  solid and broken lines for 
the Gaussian and Weibull distributions of  static strengths 
correspond to values of  ct equal to 1/2, 1 and 2 as shown, 
and the choppy  line is from the experimental data.  As 
noted earlier, the results are extremely insensitive to the 
value of  a. The differences for values of  a between 0 and 2 
are greatest at high per cents of  failure, but  even here 
represent only a few per cent of  the difference between the 
different ~ values. The data  shown is for a = 1. In  order  to 
facilitate compar ison  we have selected values of  E and 7 so 
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Figure 3 Lifetime data for Kevlar fibres held at 90% of their breaking 
load. The cumulative per cent failure is plotted versus the lifetime. The 
choppy line is the raw data 3 and the smooth curves are the theory for 
values of ct as shown. Solid lines are from the Gaussian fit of the static 
strengths and broken line for ~ = 1 is from the Weibull fit. Energetic 
parameters were chosen to force agreement of the lines from the 
Gaussian fits at 50% failute to facilitate comparison 
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Figure 4 Lifetime data for Kevlar fibres held at 80% of their breaking 
load. Their cumulative per cent failure is plotted versus the lifetime. The 
choppy line is the raw data 3 and the smoooth curves are the theory for 
values of ct as shown. Solid lines are from the Gaussian fit of the static 
strengths and broken line for ~t= i is from the Weibull fit. Energetic 
parameters were chosen to force agreement of the lines from the 
Gaussian fits at 50~ failure to facilitate comparison 

that all the calculated Gaussian curves coincide with the 
experimental da ta  at 50 ~o failure. The differences between 
the values of  E and y for each line are small and vary from 
their mean by no more  than 3 %. The same parameters are 
used in the Weibull generated line which differs only 
slightly, as do the Weibull generated lines for ct -- 1/2 and 2 
which are not  shown. 

D I S C U S S I O N  

The first feature to note is that  the basic premise, that  the 
nar row distribution of  static strengths leads to the broad  
asymmetric  distribution of  lifetimes, is supported by the 
theory,  which appears at least qualitatively to deal 
correctly with the functionality. The essential aspect of  
equation (4) is the division of  ¢r by N ~. This can be seen 
especially clearly by considering the simple Zhurkov  
expression, where bo th  a and ct are zero, which 
erroneously predicts a Gaussian distribution in lifetime 
from a Gaussian distribution in static strength. 
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It should also be emphasized that the theory does not 
depend in any direct way on the functional form used to fit 
the static strength data. In most situations it is convenient 
to fit this data with some appropriate mathematical form. 
However it is the distribution of the data itself, when fed 
into equation (8), and not the mathematical form, that 
gives rise to the asymmetric lifetime behaviour. One could 
easily apply the theory to the raw data and bypass any 
functional form fits, which simply serve to smooth out the 
roughness of a limited data set. 

It is interesting to note that for the Gaussian data at 
small fractions of failure a value of ct = 2 seems to fit the 
data at both load levels best, while at larger fractions of 
failure values of • between 1 and 0.5 work best. Without 
placing too much significance on the actual values we 
might interpret this trend from a high to a lower ct as 
follows. Considering equation (4) we can see that a small 
decrease in N increases the magnitude of the term 7tr/N ~, 
which reduces the effective activation energy ( E -  ytr/N~'), 
thus increasing the rate of degradation. Larger values of 
will accelerate this effect relative to smaller ones. Thus it is 
not surprising that the fibres which fail early are 
characterized by larger ~ values. For the longer lived 
fibres the value of • is less than unity, the value for equal 
load-sharing, reflecting the ability of the material to deal 
more locally with the degradation of strength, thus 
extending fibre life. 

Though we have formulated the theory for fibrous 
materials, the basic formalism is general enough to be 
applicable to amorphous polymeric materials. The 
variable N, which represents the number of 'fibre 
elements' or strength can just as easily be associated with 
amorphous or network systems. This is particularly true 
in the latter case where the failure of a network system 
must be directly related to the failure of individual chains 
between crosslinking junctions. 

Lastly, let us look at what is necessary to apply the 
theoretical procedures outlined here as a predictive tool. 
After all, a theory which predicts only what we already 
know is of limited utility. Basically we need two types of 
information. First we need to know what the distribution 
in static strength for the sample in question is. This is 
fairly easily and quickly done by standard mechanical test 
methods. Secondly we need to be able to evaluate the 
energetic parameters E and 7. This is best done by time- 
to-fail tests at high loads. The median data can be fit to the 
modified Zhurkov expression, equation (5), and even with 
Q taken as zero we will get reliable estimates of E and 7. 
The theory can then give estimates of both median 
lifetime and lifetime distribution at lower stress levels. 

As discussed extensively in paper 1, at lower stress 
levels other modes of degradation may predominate. 

Examples include chemical action by impurities, moisture 
or an environmental source, or exposure to light or other 
high energy radiation. Measuring the effects of these 
actions is difficult since they do not manifest themselves in 
short-time high-load lifetime tests. If estimates of the 
kinetic and energetic factors can be made they can be 
included in the model as was shown previously in paper 1 
for median lifetimes. Extension of that work to 
calculation of lifetime distribution follows directly from 
what we have done for stress-induced failure. 
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